Neural Networks And Deep Learning

Neural networks and deep learning were developed to simulate the human nervous system for machine learning tasks by treating the computational units in a learning model in a manner similar to human neurons. The grand vision of neural networks is to create artificial intelligence by building machines whose architecture simulates the computations in the human ner-
nervous system. This is obviously not a simple task because the computational power of the fastest computer today is a minuscule fraction of the computational power of a human
brain.

Related Post: A VISUAL INTRODUCTION TO DEEP LEARNING

Neural networks were developed soon after the advent of computers in the fifties and
sixties. Rosenblatt’s perceptron algorithm was seen as a fundamental cornerstone of neural
networks, which caused an initial excitement about the prospects of artificial intelligence.
However, after the initial euphoria, there was a period of disappointment in which the data-hungry and computationally intensive nature of neural networks was seen as an impediment to their usability.

Related post: Download Statistics And Machine Learning In Python

Eventually, at the turn of the century, greater data availability and increasing computational power lead to increased success of neural networks, and this area was reborn under the new label of “deep learning.” Although we are still far from the day that artificial intelligence (AI) is close to human performance, there are specific domains like image recognition, self-driving cars, and game-playing, where AI has matched or exceeded human performance.

It is also hard to predict what AI might be able to do in the future. For example, few computer vision experts would have thought two decades ago that any automated system could ever perform an intuitive task like categorizing an image more accurately than a human.

Neural networks are theoretically capable of learning any mathematical function with
sufficient training data, and some variants like recurrent neural networks are known to be
Turing complete. Turing completeness refers to the fact that a neural network can simulate
any learning algorithm, given sufficient training data.

The sticking point is that the amount of data required to learn even simple tasks are often extraordinarily large, which causes a corresponding increase in training time (if we assume that enough training data is available in the first place).

For example, the training time for image recognition, which is a simple task for a human, can be on the order of weeks even on high-performance systems. Furthermore, there are practical issues associated with the stability of neural network training, which are being resolved even today. Nevertheless, given that the speed of computers is expected to increase rapidly over time, and fundamentally more powerful paradigms like quantum computing are on the horizon, the computational issue might not eventually turn out to be quite as critical as imagined.